direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×Dic5, C23.2D5, C10.9C23, C22.11D10, (C2×C10)⋊5C4, C10⋊3(C2×C4), C5⋊3(C22×C4), C2.2(C22×D5), (C22×C10).3C2, (C2×C10).12C22, SmallGroup(80,43)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C22×Dic5 |
Generators and relations for C22×Dic5
G = < a,b,c,d | a2=b2=c10=1, d2=c5, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 98 in 54 conjugacy classes, 43 normal (7 characteristic)
C1, C2, C2, C4, C22, C5, C2×C4, C23, C10, C10, C22×C4, Dic5, C2×C10, C2×Dic5, C22×C10, C22×Dic5
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, Dic5, D10, C2×Dic5, C22×D5, C22×Dic5
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 21)(9 22)(10 23)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 11)(9 12)(10 13)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 56)(42 57)(43 58)(44 59)(45 60)(46 51)(47 52)(48 53)(49 54)(50 55)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 56 6 51)(2 55 7 60)(3 54 8 59)(4 53 9 58)(5 52 10 57)(11 44 16 49)(12 43 17 48)(13 42 18 47)(14 41 19 46)(15 50 20 45)(21 74 26 79)(22 73 27 78)(23 72 28 77)(24 71 29 76)(25 80 30 75)(31 64 36 69)(32 63 37 68)(33 62 38 67)(34 61 39 66)(35 70 40 65)
G:=sub<Sym(80)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,11)(9,12)(10,13)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,74,26,79)(22,73,27,78)(23,72,28,77)(24,71,29,76)(25,80,30,75)(31,64,36,69)(32,63,37,68)(33,62,38,67)(34,61,39,66)(35,70,40,65)>;
G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,21)(9,22)(10,23)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,11)(9,12)(10,13)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,56)(42,57)(43,58)(44,59)(45,60)(46,51)(47,52)(48,53)(49,54)(50,55)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,56,6,51)(2,55,7,60)(3,54,8,59)(4,53,9,58)(5,52,10,57)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,74,26,79)(22,73,27,78)(23,72,28,77)(24,71,29,76)(25,80,30,75)(31,64,36,69)(32,63,37,68)(33,62,38,67)(34,61,39,66)(35,70,40,65) );
G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,21),(9,22),(10,23),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,11),(9,12),(10,13),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,56),(42,57),(43,58),(44,59),(45,60),(46,51),(47,52),(48,53),(49,54),(50,55),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,56,6,51),(2,55,7,60),(3,54,8,59),(4,53,9,58),(5,52,10,57),(11,44,16,49),(12,43,17,48),(13,42,18,47),(14,41,19,46),(15,50,20,45),(21,74,26,79),(22,73,27,78),(23,72,28,77),(24,71,29,76),(25,80,30,75),(31,64,36,69),(32,63,37,68),(33,62,38,67),(34,61,39,66),(35,70,40,65)]])
C22×Dic5 is a maximal subgroup of
C10.10C42 C23.2F5 C23.11D10 Dic5.14D4 Dic5⋊4D4 C22.D20 C23.18D10 Dic5⋊D4 D5×C22×C4
C22×Dic5 is a maximal quotient of
C23.21D10 D4.Dic5
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 5A | 5B | 10A | ··· | 10N |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 |
size | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 2 | 2 | 2 | ··· | 2 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C4 | D5 | Dic5 | D10 |
kernel | C22×Dic5 | C2×Dic5 | C22×C10 | C2×C10 | C23 | C22 | C22 |
# reps | 1 | 6 | 1 | 8 | 2 | 8 | 6 |
Matrix representation of C22×Dic5 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 10 | 0 |
0 | 0 | 0 | 37 |
9 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 |
0 | 0 | 40 | 0 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,1,0,0,0,0,10,0,0,0,0,37],[9,0,0,0,0,40,0,0,0,0,0,40,0,0,40,0] >;
C22×Dic5 in GAP, Magma, Sage, TeX
C_2^2\times {\rm Dic}_5
% in TeX
G:=Group("C2^2xDic5");
// GroupNames label
G:=SmallGroup(80,43);
// by ID
G=gap.SmallGroup(80,43);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,40,1604]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^10=1,d^2=c^5,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations